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NATTIONAL AERONAUTICS AND SPACE ATMINISTRATION

TECHNICAL REPORT R-178

THEORETICAL DETERMINATION OF THE BOUNDARY
AND DISTORTION OF THE GEOMAGNETIC FIELD
IN A STEADY SOLAR WIND

By Benjamin R. Briggs and John R. Spreiter
SUMMARY

An approximate formulation of the steady-state Chapman-Ferraro problem,
given recently by Davis and Beard, is used to calculate the coordinates of the
complete boundary of the geomagnetic field. Field lines are then computed in the
magnetic meridian plane containing the free-stream direction of the solar wind,
taking into account the distorting effects of currents flowing in the boundary.
Numerical results are given for the case where the geomagnetic dipole axis is
perpendicular to the direction of the solar wind.

INTRODUCTION

This paper is concerned with the theoretical determination of the steady-
state shape and location of the interface, or boundary, between the magnetosphere
and the solar wind, and of field lines in the confined geomagnetic field. Recent
accounts of the basic physics, and of the formulation of unsteady as well as
steady-state mathematical models relating to this problem, will be found in
references 1 through 5.

The present work is an extension of that reported in references 6 through 13
wherein the three-dimensional Chapman-Ferraro problem is simplified by the intro-
duction of an approximate boundary condition. The coordinates of the entire
boundary of the magnetosphere are calculated for the case in which the dipole
axis 1s perpendicular to the free-stream direction. A number of field lines are
then computed in the magnetic meridian plane containing the free-stream direction,
taking into account the effect of electric currents in the boundary.

COMPUTATION OF THE COCRDINATES OF THE BOUNDARY
FORMULATION OF THE PROBLEM

The determination of the shape of the boundary of the geomagnetic field, and
the total magnetic field B inside 1t, involves the solution of the magnetic
field equations div B = O and curl B = 0. The earth's magnetic field is repre-
sented by a three -dimensional dipole singularity at the corigin (the center of the



earth). The normal component of B vanishes at the boundary, and Dungey (ref. 3)
has shown that the total (tangentlal) field at the boundary, B , may be expressed
mathematically by the relation

Bs®
é; 2mve cos® ¥ (1)

The quantities m, n, and v are mass, number density, and velocity of the posi-
tive lons in the solar stream, and VY 1is the angle between the free-stream
velocity vector and an outward normal to the surface. The condition cos ¥y <O
must hold on the boundary.

It is a property of the boundary-value problem described above that the
field B can vanish only at isolated points on the boundary. These points are
de51gnated neutral points. It follows from equation (1) that cos ¥ vanishes,
and the boundary is therefore parallel to the stream, at these points.

Beard (ref. 6) dropped the condition that the normal component of B
vanishes at the boundary and replaced it with the approximate condition that
Bg = 2B, where By 1s the tangential component of the geomagnetic dipole field
at the boundary. The closely related approximation, suggested by Ferraro

zref- 9),
Bg = 2Bt (2)

where f 1s a constant, was used by Spreiter and Briggs (refs. 10, 11, and 12)
and is employed in the present work.

The differential equation that defines the shape of the boundary of the
magnetosphere according to this approximation is obtained by substitution of
equation (2) into equation (1). It is, following Davis and Beard (ref. 13),

113 cos® 0 (1 3V, L[, +2_cuéeﬂ
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where p = r/rO and
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The variables r, 6, and ¢ are spherical coordinates that are fixed with respect
to the geomagnetic dipole axis (see fig. 1). The quantity MP’ the magnetic
moment of the dipole, is equal to asBpO, where a represents the radius of the
earth, and Bp, is the magnitude of B, at the magnetic equator on the surface
of the earth. The quantities in equation (L) are in cgs units, and numerical
values for ay Bp,, and m are 6.37x10% cm, 0.312 gauss, and 1.67x1072% gram

(for protohs), respectively.

The quantity ro 1s the geocentric distance along the sun-earth line to the
boundary of the geomagnetic field. Representative quiet time values for v and n
are 500 km/sec and 2.5 protons/cm®, according to preliminary analysis of data
from Mariner II (Neugebauer and Snyder, ref. 14). These lead to a value for rs
of 9.6 earth radii for f = 1. Axford (ref. 15) (see also Kellogg, ref. 16) has
suggested that 1if the weak interplanetary magnetic field is taken into account, a
collision-free shock wave may exist in the solar stream on the sunward side of
the magnetosphere. A consequence of the presence of such a shock wave is that
the dimensions of the boundary are greater by a factor of 21/® than those indi-
cated for the present model. Thus the value for r, would be about 10.8 earth
radii in the example given above.

If attention is confined to the plane ¢ = iﬁ/Q(X = 0) where the derivative
Bp/aw is zero by consideration of symmetry, equation (3) reduces to an ordinary
differential equation that can be solved analytically. The trace of the boundary
in this plane is illustrated in figure 2(a). The front portion is circular,

p = 1, and the upper portion is defined by the relation

o cos 0 = (3/22/3)p3/(1 + p%)

The point labeled N 1is the point of intersection of the two segments of this
trace. It corresponds to a neutral point of the solution of the exact Chapman-
Ferraro problem, since the magnetic field indicated by equation (2) is directed
in opposite directions on either side of these points. All field lines in the
boundary converge to the neutral points, turn sharply, and extend to the earth.
The magnitude of the magnetic field should be zero at the neutral points in the
boundary, although this condition is not fully attained in the approximate
solution given here.

The trace in the plane 06 = ﬂ/E(Z = 0), the magnetic equatorial plane, is
obtained similarly by solving numerically the ordinary differential equation to
which equation (3) reduces in this case. Tabulations of this result are given by
Beard (ref. 6) and by Spreiter and Briggs (ref. 10). It is illustrated in
figure 2(b).

Notice that the derivatives Jp/d0 and dp/dp appear to the second power in
equation (3). Thus, it may be rewritten conveniently in either the form

2
Ang—g) +A2<%§—§ +Ag =0 (5)

or
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The quadratic equations, equations (5) and (6), may be solved algebraically
for the indicated variables, thus leading to the differential equations

13  -Ap + ~NAS®-4A1As (9)
o 08 A,
1 . dp _ ~Bp *NB,2-4BiBs

o sin 6 dp 2B4 (10)

It should be noted that equations (9) and (10) are each, in actuality, two
differential equations, due to the appearance of both the plus and minus signs
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preceding the radical terms. The trace in the plane ¢ = iﬂ/E, discussed previ-
ously (see fig. 2(a)), is given by solutions of the two ordinary differential
equations to which equation (9) reduces in this case. The circular portion is a
solution to the equation with the upper sign, and the remaining portion of this
trace is a solution to the equation with the lower sign. As noted previously,
the two portions intersect at a point forward of the polar axis that corresponds
to a neutral point. The magnetic field in this trace of the boundary is pro-
portional to [sin 6 + 2(cos 6/p0)(dp/36)]1/p3, and it is evident that the alter-
native signs are related to the reversal of the direction of the field vector at
the point of intersection of the two segments of this trace.

It is to be expected, then, that the complete approximate boundary will be
composed of two surfaces that intersect, or in some manner merge, in the vicinity
of the point over the pole, and that one of these surfaces will be a solution of
equation (9) (or (10)) with the upper sign, and that the other surface will be a
solution with the lower sign. The curve on the boundary along which the signs
must be switched cannot be determined simply, so both surfaces must be computed
independently. The boundary is then considered to be the exterior part of the
two intersecting surfaces.

NUMERICAL INTEGRATION OF THE DIFFERENTIAL EQUATIONS

The solutions to equationg (9) and (10) that represent the magnetosphere
boundary are determined by an integration technique based on Euler's method for
solving ordinary differential equations. (See, e.g., Kunz, ref. 17.) The appli-
cation of this technique to the present problem will be described specifically
for equation (9). It is to be understood, however, that the description applies
as well for the solution of equation (10) except that the roles of the variables
9 and ¢ are interchanged.

Equation (9) is of the general form
dp/30 = Flp, 6, 0, (3p/30)] (11)

The integration of this equation commences at a known trace of the desired solu-
tion in some surface 6 = constant, for example, the plane 6 = n/E in the
present problem. Values for o are given at increments 4&p along this trace,
and the derivative 8p/8® is computed by numerical differentiation. The deriv-
ative Jp/d0 is now readily determined by means of equation (11). A step &40,
from the surface © = 65 to the surface 0 = 0iy1, 1s taken by inserting the
values for p;, 6;,%;, and (Bp/ée)i into the linear extrapolation formula

Pit+1 = Py + AQ(ap/ae)i (12)

The derivatives (Jp/d¢)i+1 and (dp/d9)i+1 are now calculated by the methods
stated above, and refined values for are obtained by substitution into the

i Pit+1
averaging extrapolation formula



Pi4y = Py + (28/2)[(3p/36); + (30/36);,,] (13)

New values for the derivatives of p. , are computed as before, and the
extrapolation-integration process is repeated for succeeding steps A9.

Attention should be called to the fact that the coefficients A; and A, in
equation (9) vanish for 6 = 90°. Thus, equation (9) is indeterminate at the
trace in the plane ¢ = 900, and tends to be sensitive to small errors near this
trace. The derivative Jp/00, equation (10), is zero in the plane ¢ = *90°, by
consideration of symmetry. The numerator of equation (10) should therefore
vanish at ¢ = #90°. Small errors in the vicinity of the trace in the plane
Qo = i-9OO may lead to negative values for the discriminant B22-hBlB3, however,
thus limiting the use of equation (9) near these traces. Both equations are
poorly conditioned near the polar axis, in that small errors may lead to negative
numbers under square root signs. It is due to these complications that integra-
tions could not be started in the polar region of the trace in the plane ¢ = 90°,
nor from the segment ¢ > 180° of the trace in the plane 8 = 900. Thus, the
boundary could not be determined by single integrations commencing on one or the
other of the planes of symmetry, but was calculated in several pieces, as
described in the next section of this paper.

The numerical computations have been carried out with the use of an IBM 7090
computer in the region 90° < ¢ < 270 0<8 < 90o The machine procedure
employed for the taking of derlvatlves numerlcally is SHARE Subroutine CL SMD 3,
Distribution no. 331, which has been converted for FORTRAN use. This program
involves a 7-point polynomial smoothing process, followed by a three-point dif-
ferentiation process, and it has been found to give good results in quite general
application.

RESULTS AND DISCUSSION

The sunward, nearly hemispherical, portion of the boundary was calculated
with the use of equatlon (9), starting on the segment 90° < ¢ < 180° of the trace
in the plane = 90° (see fig. 2(b)). The integration was performed in the
direction of decreasing g. The upper sign was chosen to precede the radical
term in the differential equation, by analogy with this choilce in the computation
of the circular part of the trace in the plane ¢ = 90°. The increments A9 and
Xp were 2.59 and 59, respectively. At 9 = = 20° the integration was halted
because of the occurrence of negative values of the discriminant A2 -4A A5 For
@ in the range 90° <o < 135°. Two addltlonal integrations were carried out
starting from the segments 1350 < @ < 180° and 150° < @ < 180° of the trace in
the plane = 90°. The increments X9 and AP were “taken to be 20 and 2.50,
respectively, in these two computations. The first of these was stopped at

= 189, and the second at 6 = 14°, because of the occurrence, again, of
negative values for the above indicated expressions.

It was noted earlier that the trace in the plane ¢ = 90° consists of two
intersecting curves obtained with the use of both of the differential equations



implicit in equation (10). The integrations discussed in the foregoing para-
graph might possibly have been continued to the point over the pole if it were
known at precisely what point in each plane ¢ = constant (e.g., the point N in
the plane ¢ = 90°, shown in figure 2(a)) to switch to the other of the two dif-
ferential equations. The curve in the surface along which the switching takes
place cannot be determined by any simple technique, however, so the polar portion
of the boundary must be calculated by other means. There remains, also, the com-
putation of the coordinates in the region 180° < ¢ < 270°.

Tt was found that the trace previously obtained in the range 140 < g < 90°
in the plane ¢ = 180° can be Jjoined smoothly to the point p = 23 on the polar
axis by means of a curve defined by the simple relation

o =213 + xo® (%)

The constant K 1is evaluated by substitution into this relation of the value for
p at some point, say © = 20°, on the previously determined portion of the trace
in this plane. Equation (10) was used to calculate the coordinates of the bound-
ary in the region 180° <o < 2700 commencing with the trace in plane ¢ = 180° as
discussed above. The negative sign is chosen to precede the radical term, by
analogy with the simpler computation of the trace in the plane 6 = 90°. (See,
e.g., ref. 6, 10, or 11.)

The integration was performed in the range 0 < 6 < 90° in the direction of
increasing ¢, with the increments 29 = 2° and Ap = 5°. The process yielded
results up to the plane ¢ = 255°. A second computation was performed with 29
taken to be 50. These results agree to at least three significant figures with
the first integration. A third integration was carried out in the range
0 <8 <209 where 29 and Ap were taken to be 2° and 5°, respectively. The
integration produced results up to the plane ¢ = 265° which agree to at least
three significant figures with the overlapping computations previously discussed.

The coordinates of the boundary in the region 900 <o < 1800, near the polar
axis, were computed by integrations from an assumed trace in the plane o = 135°.
The starting trace was chosen by trial and error such that the calculated traces
near the plane ¢ = 900 approached the known trace in the plane ¢ = 90° as
closely and smoothly as possible. Equation (10) was used here, with the upper
sign. The starting trace was given in the range 0 < 8 < 20°, and the increments
N9 and &p were 2° and lo, respectively. The computations were stopped at the
plane ¢ = 99° in the approach to the plane ¢ = 90°, and at the plane ¢ = 1680
in the approach to the plane ¢ = 180°. The resulting surface merges smoothly
into the lower nearly hemispherical portion, as previously calculated, for
greater than about 150°. The values for p at the plane ¢ = 99° were extrap-
olated linearly, by means of equation (12), over an increment &Ap = -9° 1o the
plane ¢ = 90°. These results agree to three significant figures with the known
analytic solution in this plane.

The results of these integrations are shown in figure 3 in the form of
traces in the planes ¢ = 90°, 105°, 1209, . . . , 270°. The traces in the
planes ¢ = 90° and 270° are the analytic solutions shown in figure 2(a), and the
point labeled N corresponds to the neutral point in the exact solution to the



Chapman-Ferraro problem. Notice that in the region 90° < ¢ < 1500 the polar
portion of the boundary intersects the main sunward portion with discontinucus
slope Bp/ae. This discontinuity unquestionably represents a failure of the pres-
ent approximation, and would not exist in the exact solution. It is believed,
however, that this is a local failure, and that the present approximate results
should be in substantial agreement with solutions to the exact problem over

nearly all of the boundary. Numerical values for p as a function of 6 in
planes of constant ¢ are presented in table I.

FIELD LINES IN THE MAGNETOSPHERE

A computation of field lines in the magnetic meridian plane containing the
free-stream direction will be described in the following paragraphs.

According to the Chapman-Ferraro geomagnetic storm theory, the field B
must exhibit a dipole singularity at the origin and satisfy the relations ”
curl B = 0 and div B = O. At the boundary, which forms as a result of inter-
action with the solar wind, the normal component of B must vanish and the
tangential component must satisfy equation (1). If the boundary has been deter-
mined so as to satisfy these boundary conditions, then the field B dinside the
boundary can be determined by solution of the above boundary-value problem.
Alternatively, but equivalently, it may be determined by summing the effects of
the geomagnetic dipole and the currents flowing in the boundary by means of the

equation

Ixd
],?:]}p+f|&|sd3 (15)
5

where Bp represents the geomagnetic dipole and d is the vector from the point
at which the field is to be determined to points on the boundary. The symbol Jg
represents the currents in the boundary, and it is related to the tangential

field Bg by the equation
Js = Bexn/kr (16)

where £ is an outwardly directed unit vector normal to the boundary. The
integration in equation (15) is to be carried out over the entire boundary. The
results for B by the two methods described above will be identical, and field
lines may be computed by solution of the differential equations

B B
dy _ ¥ dz _ 2z
ds | BI ’ ds | B (17)

where By and B, are the y and z components of B, and s 1s a running
variable along the field line.

The exact condition that the normal component of B at the boundary is zero
has been replaced, in the present boundary computation, by the approximate condi-
tion given by equation (2). If, now, Jg is evaluated by means of equation (16),

8



where By is consistent with equation (2) and the approximately determined
boundary, then field lines may be determined by use of equations (15) and (17).
Alternatively, the calculated boundary may be considered to be exact, and the
field may then be calculated by sclution of the previously stated boundary-value
problem. Since the shape of the boundary has been determined only approximately,
the two sets of resulting values for the enclosed magnetic field will be differ-
ent. The first mentioned method, involving the use of equations (15) and (16),
is the simpler of the two to apply, and will be employed here.

The constant f i1s arbitrary in the approximate boundary calculation, and
its value may be chosen so as to improve the compatibility of the boundary and
the field lines in local regions. In the present case, f was selected to assure
that none of the field lines cross the boundary on the sunward side. The value
so chosen is 0.85.

The results for several field lines are presented in figure 4. A few field
lines corresponding to the undistorted dipole are also shown for comparison.
These computations are plotted in terms of the dimensionless variable p. Fig-
ure 4 is a universal plot, for the given value of £, for all values of n and v.
The radius of the earth, p., depends upon the quantity rg (eq. (L)), however.
The field lines are labeled, for convenience, with the polar angle o at which
they intersect the earth, under the assumption that r is 9.0 earth radiil.

This case, which forms the basis for the drawing of the earth in Tigure U4,

occurs, for instance, for values of n and v of 2.5 protons/cm3 and 500 km/sec,
assuming that £ = 0.85.

A gross characteristic of the computed field is that geomagnetic dipole
lines of force are compressed on both the daytime and nighttime sides because of
the magnetic effect of electric currents in the boundary. Another is that field
lines that intersect the earth within about 70 of the polar axis on the sunward
side are swept rearward. As stated previously, the counstant f was chosen so
that none of the lines of force cross the boundary on the sunward side. The
compatibility between the approximate boundary and the field lines 1s thus seen
to be good forward of the neutral point N. The pattern of field lines tends to
recede from the boundary from the neutral point rearward, however. It would
appear, therefore, that the height 2z of the boundary indicated by the present
approximate results i1s somewhat greater than would be given by an exact solution
of the Chapman-Ferraro problem. This conclusion 1s supported, furthermore, by
the fact that the exact solution would indicate that the boundary is parallel to
the direction of the undisturbed solar wind at the neutral points and that the
maximum height of the boundary infinitely far downstream must be twice the height
at the neutral point. Thus, a lowering of the point N, consistent with the
implications of the calculated field lines, would be reflected in a general
decrease of the height of the entire rear portion of the boundary. It is antici-
pated, however, that except in the immediate vicinity of the boundary, and far
downstream from the earth, the present field computations should provide a use-
ful approximation to the results that may be anticipated when the Chapman-Ferraro
problem is ultimately solved exactly.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., April 26, 1963
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TABLE I.- VALUES OF p IN PLANES .© = CONSTANT
0, ¢, deg
38\ 90 | 105 | 120 | 135 | 150 | 165 | 180 | 195 | 210 | 225 | 240 | 255 | 270
0 |1.260(1.260]1.260]1.260]1.260|1.260|1.260|1.260[1.260[1.260{1.260}1.260{1.260
5 [1.186]1.186(1.193|1.205 [1.220 [1.235]|1.260]1.280{1.299|1.316|1.330{1.339|1.341
10 {1.116|1.121{1.137 {1.159|1.190 |{1.227|1.261|1.300|1.340|1.375|1.40k |1.425|1.430
15 [1.051{1.057|1.079|1.112 |1.155 |1.211|1.264[1.322({1.382(1.438|1.484[1.520(1.528
20 [1.000(1.013{1.04k[1.085(1.136 |1.197(1.269|1.340{1.425{1.504{1.572(1.624(1.639
25 [1.000(1.009(1.034 (1.07311.126 |1.194|2.277(1.367{1.46911.573]1.667|1.739]1.764
30 |1.000/1.008[1.031}1.068]1.122[1.193|1.285]1.390[1.513]1.646]1.772]1.869]1.907
35 |1.000{1.007 [1.030]1.066]1.120 [1.195|1.294]1.413|1.558]1.722]1.887]2.083]2.075
4O [1.000|1.007 |1.030{1.066|1.120 {1.197|1.303|1.434|1.601{1.801|2.015(|2.198{2.273
45 11.000|1.007 |1.030|1.066 |1.121 1.200|1.312{1.454|1.643|1.882{2.156(2.408|2.51L
50 [1.000(1.007 [1.030(1.066 [1.122 |1.203{1.320{1.473{1.683(1.964|2.312{2.652(2.81L
55 {1.000(1.007 {1.030(1.067 |1.124 |1.206(1.327 |1.490(1.720{2.045(2.484|2.953{3.197
60 |1.000|1.007 (1.030|1.067 |1.125 [1.208/1.333|1.505|1.754|2.12)|2.671|3.329(3.707
65 |1.000}1.007 |1.031|1.068)1.126 |1.211}1.339|1.517|1.784[2.197|2.865|3.788
70 |1.000{1.007 |1.031]1.0681.127 |1.213]1.343]1.528)1.810]2.256|3. 04k
75 11.000(1.007 |1.03111.068 [1.128 |1.214|1.34711.536]|1.830]{2.313{3.222
80 |1.000(1.007 [1.030|1.069 [1.129 |1.215|1.349|1.542(1.845(2.357(3.370
85 [1.000{1.007 {1.030(1.069 [1.129{1.218(1.349(1.544(1.853(2.388(3.473
90 [1.000{1.007{1.030]1.069|1.130 (1.219{1.349{1.545|1.855{2.392(3.500
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Figure 1.- The coordinate system.
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(a) Magnetic meridian plane containing the free-stream direction, ¢ = in/2.

Figure 2.- Analytic solutions in the planes of symmetry of the boundary.
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Figure 2.- Concluded.
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Field lines in the magnetic meridian plane containing the free-stream direction.
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conducted 5o as to contribate . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the rvesults thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958
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- TECHNICAL REPRINTS: Information derived from NASA activities
and initially published in the form of journal articles.

'SPECIAL PUBLICATIONS: Information derived from or of value to
NASA activities but not necessarily reporting the results -of individual
NASA-programmed scientific efforts. Publications include conference

. proceedings, monographs, data compilations, handbooks, sourcebooks,
and special bibliographies.

Details on the availabilify of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
"NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
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